City of Mesa Food to Energy Program Overview

Lauren Whittaker, MPA, Special Projects Manager, *City of Mesa*September 14, 2021

BACKGROUND

Food Waste Collection

Center Street Pre-Processing

Business

Fuel Collection Vehicles

Natural Gas Utility

Renewable Natural Gas

NWWRP Product Gas

Benefits

- Typical GHG emissions waste process avoided (landfill, flare)
- Displacing fossil fuel use (heavy duty vehicle diesel use)
- Made from actual waste (as opposed to crops grown specifically for fuel)
- Local supply of natural gas
- Efficiencies in collection
- Extends life of landfill
- EPA Incentives through Renewable Fuel Standard (RIN Market)

Feasibility Study

- Operational, Technical, and Financial
- Timeline: June 2018 Jan 2020
- Internal: Engineering, Water Resources, Energy Resources, Environmental Management & Sustainability
- External: Arizona State University, City of Tempe, Arcadis

Collection

Partners

- United Food Bank
- Mesa Public Schools
- Sheraton
- East Valley Institute of Technology Culinary School
- Bashas
- Arizona State University
- City of Tempe Grease Cooperative
- Arizona Recycling Coalition

Collection Results

All Partners Enthusiastic

 Minimal Contamination (with pre-processing)

Developed food waste collection service model

Processing & Benchscale Testing

Processing & Benchscale Testing Results

Established safe operating parameters

- Identified warning indicators
 - Composition can significantly alter conditions
 - Volatile Fatty Acids (VFA's) can accumulate, decreasing pH rapidly
- Increase in biogas production noted (up to 40%)

Initial design for pre-processing facility

Biogas Operations

Determined gas system need – interconnection

Developed RNG specifications with COM Energy Resources

Developing RNG monitoring procedures

Financial Evaluation

- Evaluated Incentives and Potential Biogas Uses
- Detailed Excel Project/Scenario Models Provided
- The economic evaluation included:
 - Capital improvement cost
 - Life-cycle costs
 - Potential savings or cost avoidance
 - Incremental costs
 - 20-year net present value
 - Payback period
 - Equivalent annual annuity
 - Sensitivity analysis

Financial Results

*Presented January 2020 to Council

Problem

Biogas from Food Waste/FOG receives lower value incentives

Biogas from WWTP/Landfill receives higher value incentives

• City of Mesa and ASU are working with EPA, DOE, and NREL to help find a solution to this issue.

Moving Forward Phase 1 – Flare to Fuel

- Upgrade biogas to generate D3 RINs
- Inject RNG into natural gas system
- Supply 50% of solid waste fleet annual natural gas consumption
- Currently in design
- Projected completed in Summer 2023

Moving Forward

- Future Phases
 - Pre-Processing Facility
 - Food Waste Introduction Upgrade at WWTP
 - Evaluate other WWTPs

Moving Forward

New Administration/Incentives

- Partners/funding to address RIN Market D3/D5 split
 - Working with partners including DOE, EPA, NREL, and ASU
 - Develop a methodology for quantifying cellulose conversion to methane in complex waste streams (cellulosic vs non-cellulosic sources)

Questions?

